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1. Introduction

The renormalization group (RNG) procedure for nonlinear, dissipative sys-
tems, introduced by Wilson (1975), has since been applied 'o the Navier Stokes
equations (Forster, Nelson and Stephen, 1978, De Dominicis and Martin, 1979,
Fournier and Frisch, 1983, and Yakhot and Orszag, 1986). Dynamical equations
for the large scales and long times are derived by averaging over an infinitesimal
band of small scales to remove the small scales from explicit consideration. This
procedure yields infinitesimal modifications in the equations for the large scales.
The removal process is iterated and these corrections accumulate to give finite
changes. In the case of the Navier Stokes equations, the resultant model equa-
tions for the large scales are characterized by an eddy viscosity that replaces the
molecular viscosity.

The present formulation of the RNG theory assumes that inertial-range tur-
bulence can be modeled by isotropic turbulence driven by a random force. The
force represents the net effect of the energy cascade from the very large scales on
eddies in the inertial range, and is chosen to reproduce the Kolmogorov energy
spectrum when opposed by the modified viscosity. Homogeneity in space and time
and isotropy in space allow transformation to Fourier space, where the equations
are algebraic.

For the purpose of large-eddy simulations, one would like to derive an eddy
viscosity for all wavenumbers 0 < k < A, where A is the cutoff wavenumber
defining the resolution of the simulation. Assuming a purely eddy viscosity model,
other studies of isotropic turbulence (Kraichnan, 1976, Chollet and Lesieur, 1981,
and Domaradzki, Metcalfe, Rogallo and Riley, 1987) indicate that a realistic eddy
viscosity exhibits a plateau value far from the cutoff (k << A) and increases to
several times its plateau value very near the cutoff (k - A). This "cusp-up"
behavior of the eddy viscosity is predicted by the Test-Field model of Kraichnan
(1976) and EDQNM (Chollet et al. 1981), and is consistent with direct numerical
simulations (Domaradzki et al. 1987).

At each iteration of the RNG fine-scale removal, the correction to the viscosity
is found in the low-wavenumber limit k --+ 0. Thus the RNG subgrid-scale model
(Yakhot and Orszag, 1986) includes the traditional eddy-viscosity type triads.
These triads have k << A, and p, q > A, where k + p + q = 0. As discussed by
Kraichnan (1976), the triads leading to the cusp are of a different nature, with
k just below the cutoff A, p << A and q just above A. This work explores the
possibility of relaxing the limit k -+ 0 in the derivation of the RNG eddy viscosity.

In fact, the RNG procedure involves the two limits k -- 0 and bA -+ 0, where
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6A is the width of the removed high-wavenumber shell, and we have determined
that these two limiting processes do not commute. The eddy viscosity derived by
Yakhot and Orszag (1986) is found for the ratio k/bA -+ 0, and we show that
k/6A -- 0 is necessary to recover physically meaningful results.

Since 6A is an unphysical parameter, we believe that the restriction k/6A -, 0
must be re-interpreted as a condition on a Reynolds number, and may be equiv-
alent to the so-called e-expansion. It is possible that the cusp-up can be derived
from extrapolation of an expansion of the effective viscosity near k -- 0 (for exam-
ple a Pad6 scheme). However, it seems likely that the interactions that lead to the
cusp behavior in a purely eddy viscosity model are represented by different terms
in the RNG model, for example Galilean invariant higher-order nonlinearities.

Also while at Universit6 Libre de Bruxelles, the principle investigator under-
took to derive the vorticity equation for long times and large scales using the RNG
method. The results are described in the enclosed preprint which will be submit-
ted as a brief communication to Physics of Fluids A. The restriction k/6A -.+ 0 is
implicitly enforced, and the long-time, large-scale vorticity equation is compared
to the long-time, large-scale velocity equation. Information about the large-scale,
long-time vorticity equation should be helpful for large-eddy simulations.

The second section of this report reviews the RNG procedure to remove small
scales. The third section shows that iterative removal of scales from the Navier-
Stokes quadratic nonlinearity gives the Yakhot-Orzsag eddy viscosity for k/bA --+
0, and zero for 8A/k --+ 0. In the fourth section, we attempt to clarify the work
of Zhou, Vahala and Hossain (1988, 1989). In an attempt to derive the cusp,
they considered iterative removal of scales from the cubic nonlinearity that arises
after removal of one shell from the original quadratic nonlinearity. We show that
the results for k/6A --, 0 are not mathematically meaningful. Carati (1991)
previously showed that the results are unphysical for bA/k -+ 0, and we give a
review of Carati's (1991) work. In Section 5, it is suggested that the source of
problems with the cubic term is non-Galilean invariance in the limit of long times.
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2. The RNG scale-removal procedure

The RNG model is for a Newtonian fluid in an infinite domain, stirred by a
Gaussian random force f,

avit + vjVjt = -Vp + VoV 2vi + ft

Viv, = 0 (2.1)

where vo is the molecular viscosity and the density p has been absorbed into the
pressure p. The force is defined by its two-point correlation function in wavevector
and frequency space,

<fi(k,w)fj(k',w') >= 2Do(2 7r)d+lk-YPij(k)6(k+k')6(w+w'), AL < k < Ao

= 0, 0<k<AL
(2.2)

where k is the wavevector, w is the frequency, k = Jkl and d is the number of
space dimensions. The parameter y is chosen to give the Kolmogorov form of the
energy spectrum and in three dimensions y = d = 3 (Yakhot and Orszag, 1986).
The wavenumber Ao is an ultraviolet cutoff, beyond which the energy spectrum
is taken to be zero and the viscosity is the molecular viscosity V,,o. Statistical
homogeneity in space and time is guaranteed through b(k + k')6(w + w'). The
projection operator P1j(k) = 6j - kik,/k2 makes the force statistically isotropic
and divergence-free. In the limit of an infinite Reynolds number, the integral scale
AL --- 0.

Small-scale fluctutations are eliminated from explicit appearance in (2.1) by
averaging over the force field at small scales. The force given by (2.2) is postulated
to represent the end result of the energy cascade from large to small scales, and
therefore models the production due to the quadratic nonlinearity.

The Fourier transform of (2.1) leads to

•= - 'k) O(4)15(k - )dt (2.3)
4 (21)d+l
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where AL < k < A0, , = (k,w), G(k) = (-iw + vok 2)-1, Pi,,(k) = kPsn(k) +
k,nPi,,.(k) and d4 denotes the (d + 1)-dimensional integral over the wavevector
and frequency components of 4. The parameter Ao = 1 is simply an ordering
parameter for the dimensional equations, used to identify where the Reynolds
number would appear in the nondimensional form of (2.3).

"• To begin the RNG scale-removal, one first defines the high-wavenumber
band below A, to be removed, A < k < A,, where the shell width is denoted

bA = [A, A,]. (2.4)

Then, one separates the velocity modes into vt< and P> according to scale,

',<(k:) = v(k), k < A
= 0, A < k_<A, (2.5)

,>(k) = 0, k < A
= ',(k), A<k<A0 .

Then equation (2.3) is written

ýj(k) = G(k)f](k) - •- G(k)Pi,, (k) J(ob()O(k -4) +

<> ^ .> A d4
2N> (k -4 ) + v>(4)v, (k - 4 ))-(2 -+ 1 . (2.6)

"* Since the local Reynolds number of the modes in the shell is small, one
expands -> in a perturbation series in powers of A0

V,> = •(o) + A"o,(,) + A2o'( 2) + O(A•)

One finds

S(k)=G k~fi>()+ ---•G(k)f (k -R)f(<(4)-<( -4)-

2G(4)f,>(4)0<(k - 4) + G(4)]2 (4)G(k - 4)k (( - 4)) (2d+4 (2.7)

keeping in mind that A0 identifies where the local Reynolds number appears
in the nondimensional equations. The velocity scale for the local Reynolds
number is the square root of the energy beyond the cutoff A0 , and the time
scale is based on the viscosity at the cutoff.
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e One substitutes the perturbation expansion for P>(4) into the equations
for the velocity modes &'(k) at large scales k -- AL -4 0 and long times
w -+ 0. An ensemble average over the force field in the high-wavenumber
band using (2.2) eliminates the small scales from the equations for the large
scales. The large-scale variables are assumed independent of the ensemble
average over the force at high wavenumbers, and this condition is nearly
satisfied for k -4 0. The resulting equation for i'< are written symbolically,
without subscripts, arguments, or coefficients, as

(-iw+h(k, A))O<' = f< +F<+A,,J(O<)2±A~ .J (f)<) 3 +O(A~ 3J(O<)4). (2.8)

where h(k, Ao) = vok

A~oDo Plb(k) PPmn(k) f Pn,,b(k-- q)P,.(q)q--dq

h(k, A)-h(k, A,) = (21r)d (d- 1) J voq 2(voq 2 + vo.k - q12) +00.)

(2.9)

and F< is an induced force acting at low wavenumbers (Yakhot and Orszag,
1986). The frequency integration over fl has already been carried out using
the Residue theorem, where 4 = (q, f), and we have taken the limit w -- 0,
where k = (k,w). The wavevector integration in (2.9) is restricted by A <
q_< Ao and A < k - qj _< A0 . The origin of the O(A2) term in (2.9) is
the v(q),.>(k - 4) term in (2.6), and the implications of this are discussed
below. Yakhot and Orszag (1986) took the limit k/q --+ 0 (also implicitly
assuming k/6A -+ 0, see Section 4) and found

h(k, A) - h(k, Ao) = (vT(A) - LT(Ao))k

vT(A) - vT (A.) = AdA 2 DoSd (Ad-4 - Ado 4- + O(A4) (2.10)v,2, (27r)d (4 + y - d) +

Ad 2dd+2 ' -e-4+y-d (2.11)
2d(d +2)

where Sd is the area of a sphere in d dimensions. The reason for the intro-
duction of the new parameter c will become clear below.

Iteration of the scale removal procedure can be performed by integration of
the differential equation for VT(A),
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dvr(A) = lim vT(A) - vT(Ao) _Ad vT(A)A 2(A) +O(A4) (2.12)

dA 6A-.O 6A 2 A

2D,,Sd 0 (2.13)
A (27r)d vT(A)A(.

The quantity A(A) is the effective Reynolds number at A, based on the modified
viscosity vT(A).

Notice that in writing the differential equation (2.13) one has assumed that
the value of vT derived in the limit k -- 0 is valid for all k up to the cutoff A
(Smith and Reynolds, 1991, Section 3). Analysis of direct numerical simulation
data (She, 1991) shows that the effective eddy viscosity due to triad interactions
between wavevectors k, p and q, where k + q + p = 0, k < A and p, q > A, is
indeed flat for 0 < k < A (She, 1991). Thus this assumption is consistent with
the origin of the RNG eddy viscosity being the Q (4)Q (k - t) term in (2.6).

With initial condition vT(Ao) = vo, integration of (2.12) leads to

VT(A) = v[1 + 3Ad D0Sd (A- - AO-).1/3 (2.14)vTA=o1+ PO (21r)d C I

with (2.14) strictly valid for A << A. where it is independent of vo and A& in

keeping with the assumed similarity range. For A << Ao,

vT(A) (3Ad)) /3 ( 2 d) A /3  (2.15)

and by (2.13)

,2 - (2.16)
3Ad

For c -- 0 and using (2.11), one sees that

A2 ,,, f + O(f2) (2.17)

where AO = (d2 - d)/(2d(d + 2)). Therefore, for c -- 0, (2.12) becomes
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dv2 (A) (A' + O(e)) vTr(A)A 2(A)
dA = 2 A + O(fA2)" (2.18)

For a consistent asymptotic expansion, all O(CA2) terms must be dropped, and
the lowest-order solution for i,.(A) is

vT(A) = vo 1 + 3Ad D(•Sd (Ae - A)1 (2.19)

strictly valid in the limit A << A0. Thus for c --+ 0 and A << A0,

(31AO 1/3 (2DoS 1IA_/3.

VT(A) - I) §olI d A -)/ 3. (2.20)

Since A is the effective Reynolds number of the flow at A, all perturbation
expansions used in the scale-removal procedure axe exact for c --+ 0. Furthermore,
the modified equation for ',< (k) is given at lowest-order in an expansion in powers
of e. The Yakhot-Orszag theory is an extrapolation of the RNG results at lowest
order in c to the case c = 4, which is the value for Kolmogorov scaling (Yakhot
and Orszag, 1986).

Notice that the cubic nonlinearity in the nondimensional form of (2.8) is
O(A2) = O(c) and can be neglected in comparison to the quadratic nonlinear-
ity, which is O(A) = O(el/2). However, Zhou et al. (1988, 1989) considered the
contribution to h(k, A') after removal of the next band A' < k < A, and fur-
thermore the accumulated contribution from the cubic after iterative removal of
scales. Their goal was to derive the cusp in the eddy viscosity for k : A, where A
is then the final cutoff, since the cubic term arises from the O>(4)O<(k - 4) term
in (2.6). Kraichnan (1976) showed that the cusp is a result of triad interactions
with k just below the cutoff, q just above the cutoff, and p much smaller than
the cutoff. This has been verified by analysis of direct numerical simulation data
(She, 1991).

In Section 4, we show that the contribution to h(k, A') does not make mathe-
matical sense for k/6A -+ 0, which condition is necessary to derive the eddy vis-
cosity from the quadratic nonlinearity, and is probably related to the e-expansion.
Carati (1991) showed that the contribution to h(k, A') from the cubic is unphys-
ical in the case 6A/k --+ 0. A fundamental problem with the cubic is that it is
not Galilean invariant in the limit of long times (w - 0), and this is probably the
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reason why the equations including the cubic do not give meaningful results when
5A/k -- 0.

Section 3 shows t,,at the condition k/bA -- 0 is necessary to derive the RNG
eddy viscosity [fruin the Navier Stokes quadratic nonlinearity. If this condition
is relaxed, there is no contribution to h(k, A) from the quadratic nonlinearity.
Sectior 4 shows that the cubic nonlinearity yields nonsensical results for k/1A -+

0. I• yields unphysical results for bA/k -- 0, probably because it is not Galilean
,.variant in the limit of long times (Section 5).
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3. The renormalized viscosity

The equation for v< is, from (2.6)

Pf(k) = "<(k) + ,in(4) 0(k¢ 61)2 (k)J[ 6<Ok -4)

2 D> (4 ý< + 6i>(61) Qil d61 (3.1)

M n ( n (27r)d+l

where G-' = (-iw + h(k, A)). Substituting the A-expansion (2.7) for v>, up to
second order in Ao, generates two terms linear in v< and quadratic in f>. One
comes from the v>v< term but it vanishes after ensemble averaging over f> and
integration over 4. The other linear term is generated from the v>v> term in (3.1),
symbolically this contribution is 2(G>f>)(Ao 2G> f>v<). Ensemble averaging over
f> using (2.2), the explicit form of this second linear term is, from (3.1) and (2.7),

2D 0 Ao J Pjm,(k)Pm,..(q)Pnr(k-q) x

G(k-4)G(4-k)G(C-) Ik - ql-( (22r)d+,

where the integration domain is such that A' < Jk -. q9, q < A. This is the
expression (2.9). This expression has the form T.,(k)ti,(k), but from isotropy the

tensor Ti,(k) must be proportional to Pi.: Ti,(k) = 6G-1 Pi.(k) where the scalar
6G- 1 = Pj 8(k)T2o.(k)/(d - 1). Hence this contribution can be combined with the
propagator G(k, A) to define a new propagator:

(G')-l(k, A') = G-1 (k, A) + 6G-'

where
bG1 2M (33

= (27r) J P..n(k)Pm.,(q)P.,(p) G(fP)G(-f,)G(4) p-yd4 (3.3)

with 1 = k-4 and A' < p, q < A. The factor M stands for M = Do/[(d-
1)(27r)d-1].

Taking the long-time limit, integrating over large frequencies 11 (where 4 -
(q, fQ)) using the Residue theorem, and making the usual change of variable

J dq= 1o21dO P4J dpdq
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where 4' determines the orientation of the triad around k, the equation for h(k, A)
becomes, from (3.3)

h~,A)- ~,A A(k, p, q) p-1 A)]pk (3.4)h~kA')- hk, ) =MJD2 h (p, A) [h(p, A) + h (q,A) -kqdd

The integration domain D2 is such that A'<• p, q <5 A, and

A(k,p,q) = P.mn.(k)P.tg(q)Pmr-(P) = [( 2 _ 2)q2_p
2 ) + k 2 q2] Q

4k0p2 q2

with Q2 =2k 2p 2 + 2k 2 q2 +2p 2q 2 -kc 4 - p 4 -q 4 _

3.1. k <6A

When k < SA, the domain of integration for the contribution from the quadratic
term (darkest area in Fig. 1), is composed of three distinct parts in the p, q-s pace,

I A A L pj dq+ dp jPkdq + Ij - dq jq dp

Fig. 1. Domain of integration when k < 6A.



When A = A0 , h(k, A) = Vo 02 where vo is the molecular viscosity. Assume
that h(k, A) = v(A) k2, for all k. Expanding in powers of k (with q = p +
kx, -1 < X < 1) and 6A = A-A', one finds after some lengthy but straightforward
manipulations,

h(k,A') - h(k,A) = -k 6v = M

,2 (A)X
[10 - 2y k2 Ai 2 -y 6A + 3 k 3 A-2- + -y - 6 kA 3h h -A+ O(k 4 , 2 )]

15 12 24

In the limit k/6A --+ 0, one obtains a differential equation for v(A) = h(k, A)/k 2

which is readily integrated to find

V3(A) - V3(Ao) - M 10 - 2 y A-1-Y - A 1 -y (35)
3 15 (l + y)

This expression is identical to that (2.14) obtained by Yakhot and Orszag (1986)
when d = 3 and y = c - 1 (only d = 3 is considered in this report).

3.2. k > bA

Figure 2. shows clearly that when k > 6A the contribution from the quadratic
term is second order in MA. The domain of integration D2 (darkest area in Fig.2)
in (3.4) is simply

ID2 = JA dpJAIdq
then (3.4) with h(k,A) = v(A)k 2 gives

h(k, A - M) - h(k, A) = M A(k, A, A) A-Y A2
4- 2 • (6A)2 + O(6A) 3

= M A-4-y(4Ak - k3 ) (bA) 2 + O('A) 3

V,2 8

One obtains
P cc k (6A) 2

hence the quadratic term does not contribute in the limit bA - 0 for fixed k.
Note that the form of the increment (cc k) is not consistent with the assumed k 2

dependency for h(k, A).
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Fig. 2. Domain of integration when k > MA.

4. The cusp and the triple non-linear terms

The subgrid scale eddy-viscosity, v(k/A), as defined by Kraichnan (1976),
shows a very steep rise (a "cusp") as k approaches the numerical cut-off A. As
explained by Kraichnan, this cusp behavior is due to the effect on a wavenumber
just below the cut-off of triad interactions with a very small wavenumber and
a wavenumber just above the cut-off. In the language of the previous sections,
this would originate from the 2v<v>-term in the v<-equation. The sharp cusp in
the eddy-viscosity shows that this effect is not well-modeled by an eddy-viscosity.
Note also that the cusp is not universal but depends on the large scales (Kraichnan
1976).

After one step of the shell-elimination procedure, the 2 v<v>-term generates a
triple non-linear term which is not present in the original Navier-Stokes equations.
(It is shown below that the triple term is not Galilean invariant). However, at the
next shell-elimination this triple non-linear term generates a new linear term. Zhou
et al. (1988,1989) proposed that this new contribution to the propagator could
be the one responsible for the cusp behavior of the subgrid scale eddy-viscosity.
They went on to implement a numerical version of the iterative shell-elimination
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procedure. Unfortunately, their results are strongly dependent on the shell-width
(SA) selected for the numerics. There is no evidence that the results converge
when the shell-width tends to zero. To clarify this issue, Carati (1991) studied
the problem in the limit of infinitesimal shells. He showed that the contribution
from the triple term to the propagator is proportional to k for small k and not
to k2 as for a viscous term. This k contribution does not seem to make physical
sense.

The shell-elimination procedure (Sect.2) starts by introducing a cutoff A1 <
A0 , and splitting the velocity field v into v< and v>. Substituting the A-expansion
(2.7) for Qi(4) in the v>v<-term of equation (3.1), generates a triple non-linearity
on the right-hand side and a term linear in v< (Sect.3). The triple non-linearity
has the form:

-iA°Pi (k) del d45 2 mrsAoo4)._(q) [b<(4l) )<(4t (5) 4i(¢-C)]

2 Ii( 2 7r)2d+2 2 2 av~q n~( .jv~.-4]41
(4.1)

At the next step, a new cutoff A2 < A1 is introduced and the velocity field
(formerly v<) is separated once more into < and > components. One uses the A-
expansion for the new v> terms. The triple non-linearity generates various terms,
in particular a linear term of the form

-i•o kPm. (k)[ d4dQ 2 iAo Go(4)P.,,(q) x
2 i (2 70)2d+2 2

[G 1(Q)Gi(4-Q) >+(Q)f. Q)ý-) (k-4)+
G 1 (4-Q)G(k--Q) (Q) f;(4 - Q) f (k - 4) +

Averaging over realizations of the force with (2.2)

< f2 (k)fj(k') >= 2Do(27r)d+lk-yb(k + l')Pj(k)

the term proportional to Pmn,,(q) < f>(6)f>(5- ) > vanishes upon integration
over Q, 4. One is left with

2Do A/ JPsm(k)Pmra(q)Pnr(p) Gj(0)Gi(-0)Go(4) p- d v() (4.2)

where 1 = k-4. This expression is quite similar to that obtained from the original
quadratic non-linearity (3.2) and one proceeds as before. Taking the long-time
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limit (w -- 0) and integrating over large frequencies, one defines a new propagator
at A2:

DA~ 2 P... (k)Prn..(q) P.r) ph(k, A2) - h(k, A,) 0(d 1)(2r)d J , ),[.(P, A () p-Y h4

The differences with expression (3.4) reside in the domain of integration, which
is not symmetric in p, q, and the A-dependency of the functions h(k, A) in the
integrand.

Of course a new triple non-linearity has been generated after this second
shell-elimination and it will also contribute to the propagator at the next shell-
elimination. After N + 1 eliminations, the sum of all contributions from the triple
non-linearities to the propagator can be written:

N-1 A(k, p, q) p-i
h(k, AN+l)-h(k, AN) = M z Idpdq (4.3)

j=O f h(p, AN) [h(p, AN) + h(q, Aj)] k

The integration domain BN is such that AN+I _< p < AN and Aj+j < q < Aj.

4.1. k< 6A

Suppose that all wavenumbers down to A have already been eliminated and con-
sider now the next step of the procedure where another shell of wavenumbers will
be eliminated to reach A' < A. When k < SA there is only one term in the sum
(4.3), that where AN+I < p • AN and AN • q < AN-1. The other domains Bv
are empty (Fig.1). The domain of integration D3 = BRN (lightly shaded area in
Fig.1) for the cubic term is independent of A' when k < bA, it is given by

Akdq fAdp
JD3 dIA 9_k

Expanding in powers of k and 6A, as before, the contribution of the cubic to
h(k, A') - h(k, A) = -k 2 6(,)v is equal to

M -2 k 3y k

-k
2 6()V = 5 [I-- iA- 1 -Y k2  -4 A-2- k3 + O(k4 ' 6A 2 )] (4.4)

V2(A) 15 24

This contribution does not make mathematical sense as the right-hand side
should be of order k25A but is of order k2 only.
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4.2. k > bA

This case has been studied in detail by Carati (1991). The analysis is sketched
below. In the limit of infinitesimal shells, Ai+l - Ai = bAj --- O, N --+ oo, letting
AN = A, the equation (3.8) becomes

Oh(k,A) M A 1- fA+k Aj A(k, A, Ai)

aA kh(A,A) IJA [h(A,A)+h(Aj, Ai)] dAj

This is an integro-differential equation for h(k, A). Carati (1991) looked for a
self-similar solution of the form

h(k, A) = ACv(k/A) (4.6)

Substituting in (4), one finds c = (5 - y)/3 for self-similarity and

WM M 11 x-"-' F(lx)dx (4.7)2() (1)

with

F(v)= v dw W A(v,1,w) (4.8)

To determine the form of the propagator (4.6) in the limit of very large scales,
one has to expand V(1) around 1 = 0. Let

00

F(v) = Z•fvi
i=O

then integrating (4.7) term by term with v = lx yields

M 001i F, (4.9)

() -(1) = -C

From (4.8), one finds

v 4 + c 2 6 - 3c v3 + O(v4) (4.10)

-4 15 48

Writing c = (5 - y)/3 = 2 - c/3, the final result reads

h(k, A) A23 X
h2(1)

-3 k 3 18 - k2  3 20 +t k3  k

c-3 4A c A2 +3 48 3+O()] (4.11)

The lowest order term is proportional to k and this term does not have any clear
physical interpretation. It does no' .re5')ond to a renormalized viscous damping.
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5. Non-Galilean invariance of triple non-linearities

In this section it is shown that the triple non-linear term generated by the
shell-elimination procedure is not Galilean invariant. It is believed that this non-
invariance of the resulting equations is the cause for the non-sensical results pre-
sented in Sect.4. The reason is that at the second cut one performs the shell-
elimination on an equation which has lost an essential symmetry of the original
Navier-Stokes equations, the Galilean invariance. Thus keeping the triple non-
linearity is in conflict with the spirit of the Renormalization Group analysis of the
Navier-Stokes. At each step of the RNG procedure, the equations are renormal-
ized to obtain new equations formerly identical to the original equations, and in
particular preserving all the symmetries of those original equations.

Consider a Galilean transformation :

x = x'+Vt
t = t' (5.1)

v(x, t) = V + v'(x', t')

In Fourier space:
k k'
w w' + k' V (5.2)

v(k,w) - Vb(k)6(w) + v'(k,w')

As is well-known, a Galilean transformation of the Navier-Stokes equations (2.3)
leaves them unchanged. Omitting viscosity and the force, which are irrelevant for
our purpose here (the white-noise nature of the force assures Galilean invariance
on average), (2.3) reads

( -) o2 0P.(k) d4 (5.3)
i f ( l (21r)d+l

The Galilean transformation (5.2) of (5.3) leads to

(-iw'- ik'. V) 6'(k') = -iPim(k')Vm0(k') +

~±Pmnk' f1Dm(4f')1 ( - ) d4'
2i Pi (k) n )(2ir)d+- (5.4)

This has the same form as (5.3) because Pimn(k')Vm0"(k') (k -V) 0i.

After a first elimination, a triple non-linearity of the form (cf. (4.1)):

Pi.,.(k) f d4 dd5 P,...(q) [ < (4) 0,< (4 - Q) 0(< - 4)] (5.5)
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is added to (5.3). A Galilean transformation (5.1) of that triple non-linearity (5.5)
transforms it into, after some reductions using the definition of the function Ptm
and continuity:

Pi..(k') JJ d4'dQ'P.ra(q') n(k' - 4') .(4'- Q') ,'O(Q') +

P,,n(k') J dQ' (k' V) O(l Q)ý M ) +

2Pimn(k) f d4•(q V) fi'(kl- 4) Oi'((4) +
2(.V)2f•(lk')

The appearance of the last three terms makes the equations non-invariant in the
presence of the triple non-linearity. The third term is proportional to k.

Note finally from (5.2) that the limit of large times w -- 0 seems to require
that the large scale limit k -- 0 be taken simultaneously, in order for the result to
be Galilean invariant, i.e. w' = w - k V --+ 0, k' -+ 0, when w -- 0 and k -- 0.

This might suggest why the constraint k/6A -* 0 is required to obtain sensible
results using the renormalization procedure.

18



6. Conclusions

The analysis presented above seems to indicate that the RNG procedure is
unable to derive the cusp in the eddy-viscosity, at least at the lowest order of the
technique. However, it should be pointed out that this might be more a problem
of interpretation than a shortcoming of the procedure. The cusp arises when one
insist on representing the effect of the subgrid scales on the resolved scales as an
eddy-viscosity. Two remarks are in order.

First, it is very plausible that the RNG procedure correctly determines that
part of the interactions with the subgrid scales which can actually be modeled by
an eddy-viscosity. This part would be the only one of importance when k is less
than about A/2. When eliminating all wavenumbers down to A = k while still
preserving the form v(A)k 2 (thus ignoring any cusp), the final result should rather
be interpreted as the eddy-damping in the inertial range. The RNG procedure
can then be used to obtain the EDQNM model as in Dannevik et al. (1987) from
which one can derive the cusp behavior in an appropriately defined eddy-viscosity,
exactly as in Kraichnan (1976). In effect, the RNG procedure is used in this case
to determine the free parameter in the EDQNM model.

Second. it should be pointed out that the cusp in the eddy-viscosity is a spectral
space feature. One must include the cusp when performing Large Eddy Simula-
tions (LES) using spectral methods with a sharp cut-off. It is not clear at all that
one needs to worry about the cusp when using finite-difference type methods. The
reason for this is that the cusp represent a statistical "squishing out of resolution"
of small scales. The nature of the conservative triad interactions in Fourier space
makes it impossible for a spectral method to let energy leak out at the cutoff and
one observes an artificial pile-up of energy near the high-wavenumber end if it is
not removed by an increased eddy-viscosity in that region. In a finite-difference
method, it is possible for small eddies to be squished beyond resolution, and to
disappear without having to be removed by an extra amount of viscosity.
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